Sin2x+cosx=0 solve the equation on the interval 0,2pi?

1 Answer
May 14, 2018

#x=pi/2, (7pi)/6, (3pi)/2, (11pi)/6#

Explanation:

Recall the identity #sin2x=2sinxcosx#. Rewrite the equation with this identity:

#2sinxcosx+cosx=0#

And note that we can factor out #cosx:#

#cosx(2sinx+1)=0#

We now solve the equations #cosx=0, 2sinx+1=0:#

#cosx=0 -> x=pi/2, (3pi)/2# solve this on the interval #[0, 2pi).#

#2sinx+1=0#

#2sinx=-1#

#sinx=-1/2#

#x=(7pi)/6, (11pi)/6# solve this on #[0, 2pi).#