Sketch and determine the turning points of the curve Y=1/3x^3-2x^2+3x+2?

1 Answer
Sep 5, 2017

The local maximum is at #(1,10/3)# and the local minimum is at #(3,2)#

Explanation:

The function is

#y=1/3x^3-2x^2+3x+2#

The first derivative is

#dy/dx=x^2-4x+3#

The critical points are when #dy/dx=#

That is,

#x^2-4x+3=0#

#(x-3)(x-1)=0#

#x=3# and #x=1#

We can build a variation chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##1##color(white)(aaaaaaaa)##3##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##x-1##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aaa)##+##color(white)(aaaaaaa)##+#

#color(white)(aaaa)##x-3##color(white)(aaaa)##-##color(white)(aa)####color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aaaa)##+#

#color(white)(aaaa)##dy/dx##color(white)(aaaaaa)##+##color(white)(aa)##0##color(white)(aaa)##-##color(white)(aa)##0##color(white)(aaaa)##+#

#color(white)(aaaa)##y##color(white)(aaaaaaaa)##↗##color(white)(aa)####color(white)(aaaa)##↘##color(white)(aa)####color(white)(aaaaa)##↗#

We calculate the second derivative

#(d^2y)/(dx^2)=2x-4#

When #(d^2y)/(dx^2)=0#, there is a point of inflection

#2x-4=0#, #=>#, #x=2#

We can build a variation chart with the second derivative

#color(white)(aaaa)##Interval##color(white)(aaaa)##(-oo,2)##color(white)(aaaa)##(2,+oo)#

#color(white)(aaaa)##sign (d^2y)/dx^2##color(white)(aaaaaaa)##-##color(white)(aaaaaaaaa)##+#

#color(white)(aaaa)##y##color(white)(aaaaaaaaaaaaa)##nn##color(white)(aaaaaaaaa)##uu#

graph{1/3x^3-2x^2+3x+2 [-14.24, 14.24, -7.12, 7.12]}