Solve 10cos x+13cos x/2=5 ?

2 Answers
May 2, 2018

Solution: #(x ~~106.26^0 , x ~~ -106.26^0)#

Explanation:

#10 cos x +13 cos(x/2) =5 ; [cos x = 2 cos ^2 (x/2) -1]# or

#10(2 cos ^2 (x/2) -1) +13 cos (x/2) -5=0#

#20 cos ^2 (x/2) +13 cos (x/2) -15=0# or

#20 cos ^2 (x/2) +25 cos (x/2)- 12 cos (x/2) -15=0# or

#5 cos(x/2)(4 cos (x/2)+5)-3(4 cos (x/2) +5)=0# or

#(4 cos (x/2)+5)(5 cos (x/2) -3)=0 :.# Either

#(4 cos (x/2)+5)=0 or (5 cos (x/2) -3)=0 #

#(4 cos (x/2)+5)=0 :. 4 cos (x/2)=-5 # or

# cos (x/2) !=5/4 # since range of #cos x# is #[-1,1]#

#(5 cos (x/2) -3)=0 :. 5 cos (x/2) =3 # or

#cos (x/2) =3/5:. x/2 = cos ^-1 (3/5)~~ 53.13^0 #

Also #cos (-53.13)~~3/5 :. x= 53.13*2 ~~106.26^0 #

and #x= (-53.13)*2 ~~ -106.26^0 #

Solution: #(x ~~106.26^0 , x ~~ -106.26^0)# [Ans]

May 2, 2018

# x = \pm arccos(-7/25) + 4 pi k quad# integer #k#

Explanation:

Let's start by substituting # y=x/2# to get rid of the fractional angles.

#10 cos(2y) + 13 cos y = 5#

The favored form of the cosine double angle formula is

#cos(2y) = 2 cos^2 y -1 #

Substituting,

#10(2 cos^2 y - 1) + 13 cos y - 5 = 0#

#20 cos^2y + 13 cos y - 15 = 0#

That's a pain to factor but a little search comes up with

# (5 cos y - 3)(4 cos y + 5) = 0#

#cos y = 3/5 or cos y = -5/4#

We can ignore the out of range cosine.

#cos y = 3/5 #

We can use the double angle formula:

#cos x =cos(2y) =2 cos^2 y - 1 = 2(3/5)^2-1=-7/25#

# x = arccos(-7/25) #

That's a Pythagorean Triple #7^2+24^2=25^2# so we can try to write that as # arctan(\pm 24/7)# but that's more extraneous roots.

# x = \pm arccos(-7/25) + 2 pi k quad# integer #k#

Check:

We'll check a couple with a calculator.

# x = text{Arc}text{cos}(-7/25) approx 106.260205 ^circ #

# 10 cos(106.260205) + 13 cos(106.260205/2)-5 = -7 times 10^{-8} quad sqrt#

Let's add 360 and check again:

# 10 cos(360+106.260205) + 13 cos( (360+106.260205/2 ) )-5 = -15.6 quad# DOESN'T WORK.

Because of the half angle, the correct answer seems to be

# x = \pm arccos(-7/25) + 4 pi k quad# integer #k#