Solve #dy/dx = r-ky# ?
1 Answer
Apr 20, 2017
# y = r/k-Be^(-kx) #
Explanation:
We have:
# dy/dx = r-ky #
Which is a first order separable Differential Equation. We can rearrange as follows
# 1/(r-ky)dy/dx = 1 #
So we can "separate the variables" to get:
# int \ 1/(r-ky) \ dy = int \ dx #
Integrating gives us:
# -1/k ln(r-ky) = x + C #
# :. ln(r-ky) = -kx -kC #
# :. ln(r-ky) = -kx +ln A \ \ # (by writing#lnA==kC# )
# :. ln(r-ky) -lnA = -kx #
# :. ln((r-ky)/A) = -kx #
# :. (r-ky)/A = e^(-kx) #
# :. r-ky = Ae^(-kx) #
# :. ky = r-Ae^(-kx) #
# :. y = r/k-Be^(-kx) #