Solve for x, y and z?

#(5xy)/(x+y)=6#

#(4xz)/(x+z)=3#

#(3yz)/(y+z)=2#

3 Answers
Jan 30, 2018

#x=3#, #y=2#, #z=1#

Explanation:

Given:

#{ ((5xy)/(x+y) = 6), ((4xz)/(x+z) = 3), ((3yz)/(y+z) = 2) :}#

Multiplying both sides of the first equation by #(x+y)/(xy)#, the second equation by #2(x+z)/(xz)# and the third by #3(y+z)/(yz)# we get:

#{ (5 = 6(1/x)+6(1/y)), (8 = 6(1/x)+6(1/z)), (9 = 6(1/y)+6(1/z)) :}#

Replacing the last two equations with the result of subtracting the third equation from the second we get:

#{ (5 = 6(1/x)+6(1/y)), (-1 = 6(1/x)-6(1/y)) :}#

Then adding these two equations, we get:

#4 = 12(1/x)#

Hence #x=3#

Then:

#6(1/y) = 5-6(1/x) = 5-2 = 3#

Hence #y=2#

Then:

#6(1/z) = 9-6(1/y) = 9-3 = 6#

Hence #z=1#

Feb 2, 2018

See below.

Explanation:

Making #y = lambda x# and #z = mu x#

#(5xy)/(x+y)=6 rArr (lambda x)/(1+lambda) = 6/5#

#(4xz)/(x+z)=3 rArr (mu x)/(1+mu) = 3/4#

#(3yz)/(y+z)=2 rArr (mu lambda x)/(mu+lambda) = 2/3#

and eliminating #x#

#{(mu (1 + lambda)/(mu + lambda) = 5/9),(lambda (1 + mu)/(mu + lambda) = 8/9):}#

and solving for #mu, lambda# we obtain

#mu = 1/3# and #lambda = 2/3# and then

#x = 3#
#y = 2#
#z=1#

Feb 2, 2018

# (x,y,z)=(3,2,1)#.

Explanation:

We have, #(5xy)/(x+y)=6#.

#:. (x+y)/(xy)=5/6, or, x/(xy)+y/(xy)=5/6, i.e., #

#1/y+1/x=5/6................<1>#.

Similarly, #(4xz)/(x+z)=3 rArr 1/z+1/x=4/3=8/6......<2>#, and,

#(3yz)/(y+z)=2 rArr 1/z+1/y=3/2=9/6.............<3>#.

#<<1>>+<<2>>+<<3>>rArr 2(1/x+1/y+1/z)=(5+8+9)/6=22/6#

#rArr 1/x+1/y+1/z=11/6............<4>#.

Then, #<4> - <1> rArr 1/z=(11-5)/6=1 rArr z=1#,

#<4> - <2> rArr 1/y=3/6=1/2 rArr y=2," and, finally, "#

#<4> - <3> rArr 1/x=(11-9)/6=1/3 rArr x=3#.

Altogether, #(x,y,z)=(3,2,1)#.

Enjoy Maths., and Spread the Joy!