Solve the equation by completing the square. 8x²=-11x-7?

1 Answer
Jul 3, 2018

#x=-11/16+sqrt103/16*i or x=-11/16-sqrt103/16*i#

Explanation:

Here,

#8x^2=-11x-7#

#=>8x^2+11x+7=0#

#=>8x^2+11x=-7#

Let , #color(violet)(kinRR # be the #3^(rd) term # to complet square.

#i.e. 8x^2+11x+color(violet)(k)=color(violet)(k)-7...to(1)#

In the #LHS# we have ,

#color(blue)(diamond 1^(st)term=8x^2#

#color(blue)(diamond2^(nd)term=11x#

#color(blue)(diamond3^(rd)term)=color(violet)(k#

We have formula for #3^(rd)term :#

#color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term))...to(A)#

#=>color(violet)(k)=(11x)^2/(4xx8x^2)=(121x^2)/(32x^2)#

#=>color(violet)(k=121/32#

From #(1)#,we get

#8x^2+11x+color(violet)(121/32)=color(violet)(121/32)-7=-103/32#

#=>(2sqrt2x)^2+2(2sqrt2x)(11/(4sqrt2))+(11/(4sqrt2))^2=103/32*i^2#

#=>(2sqrt2x+11/(4sqrt2))^2=(sqrt103/(4sqrt2)*i)^2#

#=>2sqrt2x+11/(4sqrt2)=+-sqrt103/(4sqrt2)*i#

#=>2sqrt2x=-11/(4sqrt2)+-sqrt103/(4sqrt2)*i#

#=>x=-11/16+-sqrt103/16*i#

...................................................................................................
Note :

Formula #(A) :color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term))# can be use

to find THIRD TERM for any eqn. without any doubt .

WHY ??? #to#Please see below.

#diamond if , a^2+2ab+k=0# ,then [use #(A)#]

#k=(2ab)^2/(4xxa^2)=(4a^2b^2)/(4a^2)=b^2#

#=>a^2+2ab+b^2=(a+b)^2#