The augmented matrix is
#A=((1,2,3,|,3),(2,4,5,|,4),(3,5,6,|,8))#
The main matrix is
#A_1=((1,2,3),(2,4,5),(3,5,6))#
The inverse is calculated as follows
Write side by side #A# and #I_3# on the right
#((1,2,3),(2,4,5),(3,5,6))((1,0,0),(0,1,0),(0,0,1))#
Perform the row operations
#R2larrR2-2xxR1# and #R3larrR3-3xxR1#
#((1,2,3),(0,0,-1),(0,-1,-3))((1,0,0),(-2,1,0),(-3,0,1))#
#R3harrR2#
#((1,2,3),(0,-1,-3),(0,0,-1))((1,0,0),(-3,0,1),(-2,1,0))#
#R2larr(R2)/(-1)# and #R3larr(R3)/(-1)#
#((1,2,3),(0,1,3),(0,0,1))((1,0,0),(3,0,-1),(2,-1,0))#
#R1larrR1-3xxR3# and #R2larrR2-3xxR3#
#((1,2,0),(0,1,0),(0,0,1))((-5,3,0),(-3,3,-1),(2,-1,0))#
#R1larrR1-2xxR2#
#((1,0,0),(0,1,0),(0,0,1))((1,-3,2),(-3,3,-1),(2,-1,0))#
Therefore,
#A_1^-1=((1,-3,2),(-3,3,-1),(2,-1,0))#
Then,
#((x_1),(x_2),(x_3))=((1,-3,2),(-3,3,-1),(2,-1,0))*((3),(4),(8)#
#=((7),(-5),(2))#