Solve #(x - 2y + 1)dx + (4x - 3y - 6)dy = 0# and give an explicit solution?

3 Answers
Nov 26, 2017

#:. (3y+x-9)^5=C(y-x+1),# is the desired GS.

Explanation:

We have, #dy/dx+(x-2y+1)/(4x-3y-6)=0....(ast).#

Let, #X=x-h, Y=y-k, h,k" constants."#

#:. dx=dX, and, dy=dY, or, dy/dx=(dY)/(dX).#

#:. (ast)" becomes, "(dY)/(dX)+(X-2Y+h-2k+1)/(4X-3Y+4h-3k-6)=0.#

Choose #h,k# such that,

#h-2k+1=0=4h-3k-6, i.e., h=3, k=2.#

#:.X=x-3, &, Y=y-2rArr(dY)/(dX)+(X-2Y)/(4X-3Y)=0....(ast').#

This is a Homogeneous Diff. Eqn., &, to find its General Solution (GS),

we substitute #Y=VXrArr (dY)/(dX)=V+X(dV)/(dX).#

#:.(ast')rArr V+X(dV)/(dX)+(X-2VX)/(4X-3VX)=0, or,#

#X(dV)/(dX)+(1-2V)/(4-3V)+V=0, i.e., X(dV)/(dX)+(1+2V-3V^2)/(4-3V)=0#.

#:.(3V-4)/(3V^2-2V-1)dV+1/XdX=0...."[Separable Variable]."#

#:.int(3V-4)/(3V^2-2V-1)dV+int1/XdX=lnc.#

#:.int[1/4{15/(3V+1)-1/(V-1)}]dV+lnX=lnc.#

#:.1/4{15*1/3ln(3V+1)-ln(V-1)}+lnX=lnc.#

#:.5/4ln(3V+1)-1/4ln(V-1)+lnX=lnc.#

#:.5ln(3V+1)-ln(V-1)+4lnX=4lnc=lnC.....[C=c^4].#

Since, #V=Y/X=(y-2)/(x-3),# we have,

#5ln{(3(y-2))/(x-3)+1}-ln{(y-2)/(x-3)-1}+4ln(x-3)=lnC.#

#:.5ln{(3y+x-9)/(x-3)}-ln{(y-x+1)/(x-3)}+4ln(x-3)=lnC.#

#:.ln{(3y+x-9)/(x-3)}^5-ln{(y-x+1)/(x-3)}+ln(x-3)^4=lnC.#

#:.ln[{(3y+x-9)/(x-3)}^5xx{(x-3)/(y-x+1)}(x-3)^4]=lnC.#

#:.ln[(3y+x-9)^5/{(y-x+1)}]=lnC.#

#:. (3y+x-9)^5=C(y-x+1),# is the desired GS.

Enjoy Maths.!

Nov 26, 2017

See below.

Explanation:

Making the change of variables

#((1,-2),(4,-3))((x),(y))=((u),(v))#

we have

#(u+1)(-3du+2dv)+(v-6)(-4du+dv) = 0#

Making now

#{(U=u+1),(V = v-6):}# we have

#U(-3dU+2dV)+V(-4dU+dV)= 0# or

#-3UdU+2U dV-4V dU+V dV = 0#

introducing now the change of variables

#{(eta = U^2),(xi = V^2):}# we have

#-3/2d eta+1/2 d xi +sqrt(eta/xi) d xi-2 sqrt(xi/eta)d eta = 0# or

#(1/2+sqrt(eta/xi))d xi = (3/2+2sqrt(xi/eta)) d eta#

Making now the change of variables

#eta = lambda xi rArr d eta = lambda d xi + xi d lambda#

#(1/2+sqrt lambda)d xi= (3/2+2/sqrt(lambda))(lambda d xi + xi d lambda) #

and now calling #f(lambda) = ((1/2+sqrt lambda)/ (3/2+2/sqrt(lambda)))# we have now

#(f(lambda)-lambda)d xi = xi d lambda# which is separable

#(d lambda)/(f(lambda)-lambda)=(d xi)/xi# giving

#-5/2 log(1 - 3 sqrt lambda) + 1/2 log(1 + sqrt lambda)= log xi + C_0# or

#(1+sqrtlambda)/(1-3sqrtlambda)^5 = C_0^2 xi^2#

The recovery to the #x, y# variables is left as an exercise.

Nov 28, 2017

# y-x+1 = (3y+x-9)^5#

Explanation:

We have:

# (x - 2y + 1)dx + (4x - 3y - 6)dy = 0 #

Which we can write as:

# dy/dx = - (x - 2y + 1)/(4x - 3y - 6) # ..... [A]

Our standard toolkit for DE's cannot be used. However we can perform a transformation to remove the constants from the linear numerator and denominator.

Consider the simultaneous equations

# { ( x - 2y + 1=0 ), (4x - 3y - 6=0) :} => { ( x=3 ), (y=2) :} #

As a result we perform two linear transformations:

Let # { (u=x-3 ), (v=y-2) :} => { ( x=u+3 ), (y=v+2) :} #

And if we substitute into the DE [A] we get

# (dv)/(du) = - ((u+3) - 2(v+2) + 1)/(4(u+3) - 3(v+2) - 6) #
# \ \ \ \ \ = - (u+3 - 2v-4 + 1)/(4u+12 - 3v-6 - 6) #
# \ \ \ \ \ = - (u- 2v)/(4u- 3v) # .... [B]

This is now in a form that we can handle using a substitution of the form #v=wu# which if we differentiate wrt #u# using the product gives us:

# (dv)/(du) = (w)(d/(du)u) + (d/(du)w)(u) = w + u(dw)/(du) #

Using this substitution into our modified DE [B] we get:

# \ \ \ \ \ w + u(dw)/(du) = - (u- 2wu)/(4u- 3wu) #

# :. w + u(dw)/(du) = - (1- 2w)/(4- 3w) #

# :. u(dw)/(du) = - (1- 2w)/(4- 3w) -w #

# :. u(dw)/(du) = ( (2w-1) -w(4- 3w) )/(4- 3w)#

# :. u(dw)/(du) = ( 3w^2-2w-1 )/(4- 3w)#

This is now a separable DE, so we can rearrange and separate the variables to get:

# int \ (4- 3w)/( 3w^2-2w-1 ) \ dw= int \ 1/u \ du #

The denominator in the LHS factorises and we can decompose into partial fractions (omitted) giving

# int \ 1/(4(w-1)) -15/(4(3w+1)) \ dw= int \ 1/u \ du #

Which is now readily integrable giving:

# 1/4 ln (w-1) -5/4ln(3w+1) = ln u + lnA #

# :. ln (w-1) -ln(3w+1)^5 = 4ln Au #

# :. ln (w-1)/(3w+1)^5 = ln Cu^4 #

# :. (w-1)/(3w+1)^5 = Cu^4 #

Then restoring the earlier substitution we have:

# w=v/u = (y-2)/(x-3) #

Thus:

# ((y-2)/(x-3)-1)/(3(y-2)/(x-3)+1)^5 = C(x-3)^4 #

We can simplify by placing each fraction over a common denominator:

# ( ( (y-2)-(x-3))/(x-3) )/( (3(y-2)+x-3)/(x-3))^5 = C(x-3)^4 #

# :. ( ( y-2-x+3)/(x-3) ) * ( (x-3) / (3y-6+x-3))^5 = C(x-3)^4 #

# :. ( (y-x+1) * (x-3)^4 ) / (3y+x-9)^5 = C(x-3)^4 #

# :. y-x+1 = (3y+x-9)^5#

This is the General Solution, and we would struggle to get an explicit solution