With the switch open we have
i_(10) = i_(20) = E/(R_1+R_2)i10=i20=ER1+R2
After closing the switch
{(E = i_1 R_1+(i_1-i_2)R_3),(i_2 R_2+d/(dt)i_2 L+(i_2-i_1)R_3=0):} or
{((R_1+R_3)i_1-R_3i_2 = E),(-R_3 i_1+(R_2+R_3+d/(dt)L)i_2 = 0):}
substituting for i_2
[((R_1+R_3)/R_3)(R_2+R_3+d/(dt)L)-R_3]i_1=((R_2+R_3)/R_3) E
now calling
eta = ((R_1+R_3)/R_3)
lambda = eta(R_2+R_3)-R_3 and
mu = etaL
we have
lambda i_1 + mu d/(dt) i_1 = eta E with solution
i_1 = eta/lambda E + C_0 e^(-lambda/mu t) but at t=0 we have i_1 = i_(10) then
i_(10) = eta/lambda E +C_0 rArr C_0 = i_(10)-eta/lambda E and then
i_1 = eta/lambda E+(i_(10)-eta/lambda E)e^(-lambda/mu t) or
i_1 = i_(10)e^(-lambda/mu t)+eta/lambda E(1-e^(-lambda/mu t))
With the same procedure we obtain i_2 and is left as an exercise.