Subtract (4+2x+8x^2+3x^3)-(-8+2x-8x^2+3x^3)?

Jun 22, 2018

See a solution process below:

Explanation:

First, remove all of the terms from parenthesis. Be careful to handle the signs of each individual term correctly:

$4 + 2 x + 8 {x}^{2} + 3 {x}^{3} + 8 - 2 x + 8 {x}^{2} - 3 {x}^{3}$

Next, group like terms:

$3 {x}^{3} - 3 {x}^{3} + 8 {x}^{2} + 8 {x}^{2} + 2 x - 2 x + 4 + 8$

Now, combine like terms:

$\left(3 - 3\right) {x}^{3} + \left(8 + 8\right) {x}^{2} + \left(2 - 2\right) x + \left(4 + 8\right)$

$0 {x}^{3} + 16 {x}^{2} + 0 x + 12$

$16 {x}^{2} + 12$

Jun 22, 2018

$16 {x}^{2} + 12$

Explanation:

For formatting use:

hash (4+2x+8x^2+3x^3)-(-8+2x-8x^2+3x^3) hash

Have a look at https://socratic.org/help/symbols

Multiply EVERYTHING in the right bracket by (-1) This will change the sign between the brackets and all those inside the right brackets.

$\left(4 + 2 x + 8 {x}^{2} + 3 {x}^{3}\right) + \left(8 - 2 x + 8 {x}^{2} - 3 {x}^{3}\right)$

If you find it more straight forward do this:

$4 + 2 x + 8 {x}^{2} + 3 {x}^{3}$
$\underline{8 - 2 x + 8 {x}^{2} - 3 {x}^{3}} \leftarrow \text{ Add}$
$12 + 0 + 16 {x}^{2} + 0$

Giving:

$16 {x}^{2} + 12$