Sum the following up to infinity?
#1/(2*5)+1/(3*6)+1/(4*7)+1/(5*8)+1/(6*9)+.....#
2 Answers
Explanation:
convert it into this:-
then, divide the sum into to parts- the positive constants and the negative constants.
cancel all the constants of opposite signs,i.e., from
take LCM on the inside
hope this helps,
Shivang M.
Explanation:
#1/(2*5)+1/(3*6)+1/(4*7)+...= sum_(n=1)^oo 1/((n+1)(n+4))#
Note that:
#1/((n+1)(n+4)) = 1/3(1/(n+1)-1/(n+4))#
So:
#sum_(n=1)^N 1/((n+1)(n+4))#
#=1/3 sum_(n=1)^N (1/(n+1)-1/(n+4))#
#=1/3 (sum_(n=1)^N 1/(n+1)- sum_(n=1)^N 1/(n+4))#
#=1/3 (sum_(n=1)^N 1/(n+1)- sum_(n=4)^(N+3) 1/(n+1))#
#=1/3 (1/2+1/3+1/4+color(red)(cancel(color(black)(sum_(n=4)^N 1/(n+1))))- color(red)(cancel(color(black)(sum_(n=4)^N 1/(n+1))))-1/(N+2)-1/(N+3)-1/(N+4))#
#=1/3 (1/2+1/3+1/4-1/(N+2)-1/(N+3)-1/(N+4))#
Then:
#sum_(n=1)^oo 1/((n+1)(n+4)) = lim_(N->oo) sum_(n=1)^N 1/((n+1)(n+4))#
#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = lim_(N->oo) 1/3 (1/2+1/3+1/4-1/(N+2)-1/(N+3)-1/(N+4))#
#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = 1/3 (1/2+1/3+1/4)#
#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = 1/3 ((6+4+3)/12)#
#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = 13/36#