Sum the following up to infinity?

#1/(2*5)+1/(3*6)+1/(4*7)+1/(5*8)+1/(6*9)+.....#

2 Answers
Jul 28, 2018

#13/36#

Explanation:

convert it into this:-

#1/3{[1/2-1/5]+[1/3-1/6]+[1/4-1/7]+......}#

then, divide the sum into to parts- the positive constants and the negative constants.

#=1/3{[1/2+1/3+1/4+1/5+......]-[1/5+1/6+1/7+......]}#

cancel all the constants of opposite signs,i.e., from #1/5 # to infinity.

#=1/3{1/2+1/3+1/4}#

take LCM on the inside

#=1/3{[6+4+3]/12}#

#=13/36#

hope this helps,
Shivang M.

Jul 28, 2018

#sum_(n=1)^oo 1/((n+1)(n+4)) = 13/36#

Explanation:

#1/(2*5)+1/(3*6)+1/(4*7)+...= sum_(n=1)^oo 1/((n+1)(n+4))#

Note that:

#1/((n+1)(n+4)) = 1/3(1/(n+1)-1/(n+4))#

So:

#sum_(n=1)^N 1/((n+1)(n+4))#

#=1/3 sum_(n=1)^N (1/(n+1)-1/(n+4))#

#=1/3 (sum_(n=1)^N 1/(n+1)- sum_(n=1)^N 1/(n+4))#

#=1/3 (sum_(n=1)^N 1/(n+1)- sum_(n=4)^(N+3) 1/(n+1))#

#=1/3 (1/2+1/3+1/4+color(red)(cancel(color(black)(sum_(n=4)^N 1/(n+1))))- color(red)(cancel(color(black)(sum_(n=4)^N 1/(n+1))))-1/(N+2)-1/(N+3)-1/(N+4))#

#=1/3 (1/2+1/3+1/4-1/(N+2)-1/(N+3)-1/(N+4))#

Then:

#sum_(n=1)^oo 1/((n+1)(n+4)) = lim_(N->oo) sum_(n=1)^N 1/((n+1)(n+4))#

#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = lim_(N->oo) 1/3 (1/2+1/3+1/4-1/(N+2)-1/(N+3)-1/(N+4))#

#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = 1/3 (1/2+1/3+1/4)#

#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = 1/3 ((6+4+3)/12)#

#color(white)(sum_(n=1)^oo 1/((n+1)(n+4))) = 13/36#