Suppose that #g(x)=5x^4-15x^2-32#. How do you solve the equation for #x# if #g(x)=-32#? What about #g(x)=58#?

1 Answer
Feb 20, 2017

Case 1: #g(x)=-32 rarr color(green)(x in {0,+-sqrt(93)})#

Case 2: #g(x)=58 rarr color(green)(x in {+-sqrt(6),+-sqrt(3)i})#

Explanation:

Given: #color(blue)(g(x)=5x^4-15x^2-32#

Part 1: #color(red)("If "g(x)=-32)#

#color(red)(-32)=color(blue)(5x^4-15x^2-32)#

#rarr color(blue)(5x^4-15x^2)=0#

#rarr 5xxx^2xx(x^2-3)=0#

#rarr{(x^2=0,color(white)("X")orcolor(white)("X"),x^2-3=0), (rarrx=0,,rarrx=+-sqrt(3)) :}#

#x in {-sqrt(3),0,+sqrt(3)}#

Part 2: #color(red)("If "g(x)=58)#

#color(red)(58)=color(blue)(5x^4-15x^2-32)#

#rarr color(blue)("5x^4-15x^2)-90=0#

#rarr 5xx(x^2-6)xx(x^2+3)=0#

#rarr{((x^2-6)=0,color(white)("X")orcolor(white)("X"),x^2+3=0), (rarrx=+-sqrt(6),,rarrx=+-sqrt(3)i) :}#

#x in{-sqrt(6),+sqrt(6),-sqrt(3)i,+sqrt(3)i}#