Suppose that the cubic function f(x)=(x-a)(x-b)(x-c) has three distinct zeroes: a, b, c. Prove that a tangent line drawn at the average of the zeroes a and b intersect the graph of f at the third zero?

2 Answers
Mar 15, 2018

See below.

Explanation:

Given

#f(x) = (x-a)(x-b)(x-c)#

#x_0 = (a+b)/2#

the tangent line at #x_0# is

#y = y_0 + (deltaf_0)(x-x_0)#

where

#y_0 = f(x_0) = 1/8(a-b)^2(2c-a-b)#
#delta f_0 = f'(x_0) = 3x^2-2(a+b+c)x_0+ab+ac+bc = -1/4(a-b)^2#

now the intersection between the tangent line and #f(x)# we have to solve

# f(x) = y_0 + (deltaf_0)(x-x_0)# or

#x^3-(a+b+c)x^2+(ab+ac+bc)x-abc -( 1/8(a-b)^2(2c-a-b)-1/4(a-b)^2(x-(a+b)/2))=0#

or after simplifications

#1/2(a+b-2x)^2(x-c)=0#

and as we can observe #x = c# is a root as expected.

Mar 15, 2018

See below:

Explanation:

#f((a+b)/2)=((a+b)/2-a)((a+b)/2-b)((a+b)/2-c)#
# qquad =-1/4(a-b)^2((a+b)/2-c)#

Thus, the slope of the line joining the point #((a+b)/2,f((a+b)/2))# to the point #(c,0)# is

#(f((a+b)/2)-0)/((a+b)/2-c) = -1/4(a-b)^2 #

Now, the derivative of #f(x)# is given by

#f'(x)=(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c) = (x-a)(x-b)+(2x-a-b)(x-c)#

So, the slope of the tangent to the curve at the point #((a+b)/2,f((a+b)/2))# is

#f'((a+b)/2)= ((a+b)/2-a)((a+b)/2-b)+(2 times (a+b)/2-a-b)((a+b)/2-c) = -1/4(a-b)^2#

Thus the tangent at the point #((a+b)/2,f((a+b)/2))# goes through #(c,0)#.