The angle #theta# satisfies #tan(2theta)=sintheta#. Show that either #sintheta=0# or #2costheta=2cos^2theta-1# (i did this). Hence find the smallest possible value of #theta#?

1 Answer
Oct 15, 2015

Solve #tan 2x = sin x#

Explanation:

#sin 2x/(cos 2x) = sin x#
#sin 2x = sin x.cos 2x#
#2sin x.cos x - sin x(2cos^2 x - 1)#
#sin x(2cos x - 2cos^2 x + 1) = 0#
Either #sin x = 0# or #(-2cos^2 x + 2cos x + 1) = 0#
Call cos x = t, we get:
#-2t^2 + 2t + 1 = 0#
#D = d^2 = 4 + 8 = 12 = 4sqrt3# --> #d = +- 2sqrt3#
#t = -2/4 +- (2sqrt3)/4 = (-1 +- sqrt3)/2#

The smallest possible of arc x has as cos:

#cos x = t = (-1 + sqrt3)/2 = (0.73)/2 = 0.36#
cos x = 0.36 --> x = 68,90
Smallest value of x --># x = 68^@90#