Recall;
Area of triangle # = 1/2 "base" xx "height"#
Area of triangle #= 2x^2 - 11x + 15#
base #=2x - 5#
Plugging in the given;
#2x^2 - 11x + 15 = 1/2 (2x - 5) xx "height"#
#2x^2 - 11x + 15 = (2x - 5)/2 xx "height"#
#(2x^2 - 11x + 15)/1 = (2x - 5)/2 xx "height"#
#2(2x^2 - 11x + 15) = (2x - 5) xx "height"#
#4x^2 - 22x + 30 = (2x - 5) xx "height"#
#(4x^2 - 22x + 30)/(2x - 5) = "height"#
Resolving the quadratic equation;
#(4x^2 - 22x + 30)#
Simplifying;
#(4x^2)/2 - (22x)/2 + 30/2#
#2x^2 - 11x + 15#
Using Factorization Method..
#6 and 5# are factors..
#2x^2 - 6x - 5x + 15#
Grouping;
#(2x^2 - 6x) (- 5x + 15)#
#2x(x - 3) - 5(x - 3)#
#(x - 3) (2x - 5)#
Therefore;
#(4x^2 - 22x + 30)/(2x - 5) = "height"#
#color(white)(xxxxx)darr#
#(color(red)(2)(x - 3) (2x - 5))/(2x - 5) = "height"#
#(color(red)(2)(x - 3) cancel(2x - 5))/cancel(2x - 5) = "height"#
#color(red)(2)(x - 3) = "height"#