The function #f(x) = x^3-x^2-14x+24# intersects the #x#-axis at the point #(k, 0)#. What is one possible value of #k#?
2 Answers
Explanation:
#"substitute "(k,0)" into "f(x)#
#f(k)=k^3-k^2-14k+24=0#
#"note that "k=2tof(2)=0#
#"hence one value of "k=2#
#"other values may be found as follows"#
#k=2rArr(k-2)" is a factor"#
#rArrk^3-k^2-14k+24#
#=color(red)(k^2)(k-2)color(magenta)(+2k^2)-k^2-14k+24#
#=color(red)(k^2)(k-2)color(red)(+k)(k-2)color(magenta)(+2k)-14k+24#
#=color(red)(k^2)(k-2)color(red)(+k)(k-2)color(red)(-12)(k-2)cancel(color(magenta)(-24))cancel(+24)#
#rArr(k-2)(k^2+k-12)=0#
#rArr(k-2)(k+4)(k-3)=0#
#rArrk=-4,k=2,k=3" are all possible values"#
Explanation:
Given:
#f(x) = x^3-x^2-14x+24#
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1, +-2, +-3, +-4, +-6, +-8, +-12, +-24#
We find:
#f(2) = 8-4-28+24 = 0#
So
#x^3-x^2-14x+24 = (x-2)(x^2+x-12) = (x-2)(x+4)(x-3)#
So