The normal at a point #P# of the ellipsoid #x^2/a^2+y^2/b^2+z^2/c^2=1# meets the coordinate planes in #A,B,C#. Show that #AP:BP:CP::a^2:b^2:c^2#?

The normal at a point #P# of the ellipsoid #x^2/a^2+y^2/b^2+z^2/c^2=1# meets the coordinate planes in #A,B,C#. Show that #AP:BP:CP::a^2:b^2:c^2#

1 Answer
Mar 25, 2017

See below.

Explanation:

The normal at a point #P# to the ellipsoid #x^2/a^2+y^2/b^2+z^2/c^2=1# meets the coordinate planes in #A,B,C#. Show that #AP:BP:CP::a^2:b^2:c^2#

Given #E->x^2/a^2+y^2/b^2+z^2/c^2-1=0#

and a point #p_0=(x_0,y_0,z_0) in E#

the normal to #E# at #p_0# is given by

#L->p=p_0+lambda vec n_0#

where #lambda in RR# and #vec n_0 = 1/2 (grad E)_(p_0) = (x_0/a^2,y_0/b^2,z_0/c^2)#

The intersections with the planes are given by

#{(0=x_0+lambda_x x_0/a^2),(0=y_0+lambda_y y_0/b^2),(0=z_0+lambda_z z_0/c^2):}#

for values of #lambda = {-a^2,-b^2,-c^2}# The intersection points then are:

#A = (0, y_0-a^2y_0/b^2,z_0-a^2z_0/c^2)#
#B=(x_0-b^2x_0/a^2,0,z_0-b^2 z_0/c^2)#
#C=(x_0 -c^2x_0/a^2,y_0-c^2y_0/b^2,0)#

and

#(PA)/(PB)=a^2/b^2#
#(PA)/(PC)=a^2/c^2#
#(PB)/(PC)=b^2/c^2#