Considering the Heron's formula of area of the triangle #ABC#
#Delta=sqrt(s(s-a)(s-b)(s-c))#, where #a,bandc# are three sides of the triangle and its semi perimeter is #s# i.e.#2s=a+b+c#
Now let
#s-a=x,s-b=yands-c=z#
Now each of #x,y and z# is greater than zero as sum of two sides of a triangle is greater than third side.
So
#x+y=2s-a-b=a+b+c-a-b=c#
Similarly
#y+z=2s-b-c=a#
And
#z+x=2s-c-a=b#
Now we know #AM>GM#
So #(x+y)/2>=sqrt(xy)#
#(y+z)/2>=sqrt(yz)#
#(z+x)/2>=sqrt(zx)#
So multiplying we get
#sqrt(xy*yz*zx) <= 1/8(x+y)(y+z)(z+x)#
#=>sqrt(x^2y^2z^2)<=1/8(x+y)(y+z)(z+x)#
#=>xyz<=1/8(x+y)(y+z)(z+x)#
#=>(s-a)(s-b)(s-c)<=1/8cba#
#=>s(s-a)(s-b)(s-c)<=1/8scba#
#=>s(s-a)(s-b)(s-c)<=1/8*1/2(a+b+c)abc#
#=>sqrt(s(s-a)(s-b)(s-c))<=sqrt(1/16(a+b+c)abc)#
#=>Delta<=1/4sqrt((a+b+c)abc)#
We know for an equilateral triangle of side #a#
#Delta=sqrt3/4a^2#. So equality of the above relation is satisfied when #a=b=c#