The roots of the equation #x^2 + px + q =0 #are β and α. The roots of another equation #x^2 + (q/2 +1)x + p -5=0# are α+2 and β+2, where α>β and p and q are constant. Find (a) the values of p and q ? (b) the value of α and β ?

(c) a quadratic equation with the given roots, 5α and 5β.

1 Answer
Jan 25, 2018

Given that roots of #x^2 + px + q =0 # are #beta and alpha#.
So #alpha+beta =-p and alphabeta=q#

Again the roots of another equation #x^2 + (q/2 +1)x + p -5=0# are #beta +2and alpha+2#.

So #alpha+beta+4 =-(q/2+1) and (alpha+2)(beta+2)=p-5#

Now #alpha+beta+4 =-(q/2+1)#
#-p+4 =-(q/2+1)#

#=>2p-8 =q+2#

#=>2p-q=10........[1]#

Again

#(alpha+2)(beta+2)=p-5#

#=>alphabeta+2(alpha+beta)+4=p-5#

#=>q-2p+4=p-5#

#=>3p-q=9.......[2]#

Subtracting []1 from [2] we get
(a)
#p=-1#

So #q = -12#

Hence #alpha+beta=-p=1#
#alphabeta =q=-12#

#alpha -beta =sqrt((alpha+beta)^2-4alphabeta)=sqrt((-1)^2-4(-12))=7#
Given #alpha>beta#

(b)
So #2alpha=8=>alpha=4 #
and #beta=-3#
(c) the equation having roots #5alpha and 5beta# will be

#x^2-(5alpha+5beta)x+25alphabeta=0#

#=>x^2-5(alpha+beta)x+25alphabeta=0#

#=>x^2-5x+25(-12)=0#

#=>x^2-5x-300=0#