#color(magenta)("Building the equations")#
Let the first digit be #a#
Let the second digit be #b#
#color(blue)("The first condition")#
#a+b=7# ...............................(1)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("The Second condition")#
#color(green)("The first order value: ")#
#color(white)(xxxx)a# is a counting in tens. So actual value is #10xxa#
#color(white)(xxxx)b# is counting in units. So actual value is #1xxb#
#color(green)("The first Order Value" =10a+b)#...............................(2)
'-----------------------------------------------------------------------'
#color(purple)("The second order value:")#
#color(white)(xxxx)b# is a counting in tens. So actual value is #10xxb#
#color(white)(xxxx)a# is counting in units. So actual value is #1xxa#
#color(purple)("The second Order Value" =10b+a)#.........................(3)
'----------------------------------------------------------------------'
From the question
#color(red)("Equation (3)" - "Equation (2)"=9)#.................................(4)
#color(magenta)("|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||")#
#color(blue)("Putting it all together")#
#"Equation 4 becomes" ->(10b+a) -(10a+b)=9#
#9b-9a=9 color(white)(..)............................................(4_a)#
#a+b=7 color(white)(..).................................................(1)#
From equation (1)
#a=7-b#
Substitute in #(4_a)# giving:
#9b-9(7-b)=9#
#9b+9b-63=9#
#18b=72#
#color(blue)(b=72/18 = 4)#
Substitute in Equation (1) giving
#a+b=7-> a+4=7#
#color(blue)(a=3)#