The value of #x# satisfying the equation #abs(abs(abs(x^2-x+4)-2)-3)=x^2+x-12# is?
1 Answer
Jul 30, 2018
Explanation:
Given:
#abs(abs(abs(x^2-x+4)-2)-3) = x^2+x-12#
Note that:
#x^2+x-12 = (x+4)(x-3)#
which is non-negative (as required) when
Also note that:
#x^2-x+4 = (x-1/2)^2+15/4 > 2" "# for all#x in RR#
So:
#abs(abs(x^2-x+4)-2) = abs((x-1/2)^2+15/4-2) = (x-1/2)^2+7/4#
If
So when
#abs(abs(abs(x^2-x+4)-2)-3) = x^2-x-1#
and we want to solve:
#x^2-x-1 = x^2+x-12#
Subtracting
#11 = 2x#
Hence:
#x = 11/2 > 3#
graph{(y-abs((x^2-x+2)-3))(y-(x^2+x-12)) = 0 [-7.7, 12.3, -6, 32]}