The variables x=9 and y=15 varies directly. How do you write an equation that relates the variables and find x when y=-5?

2 Answers
Sep 28, 2017

#x=3# when #y=5#

Explanation:

When y increases, x also increases in the same proportion and when y decreases, x also decreases in the same proportion.
So #x:y=x1:y1#
Or #x/y=(x1)/(y1)#
We know, y=15, x=9 and y1=5
#:.x1=((x/y)(y1)=(9/15)5=45/15=3#
#x1=3#

Sep 28, 2017

The equation is #y=5/3x#
and
#y=-5color(white)("xx")rarrcolor(white)("xx")x=-3#

Explanation:

If #x# and #y# vary directly, then
#color(white)("XXX")y=color(blue)c * x# for some constant #color(blue)c#

Given that #x=9# and #y=15# is one solution to this equation:
#color(white)("XXX")15=color(blue)c * 9#

#color(white)("XXX")rarr color(blue)c=15/9=color(blue)(5/3)#

So the relating equation is #y=color(blue)(5/3)x#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When #y=-5#, the equation becomes:
#color(white)("XXX")-5=color(blue)(5/3)color(green)x#

#color(white)("XXX")rarr color(green)x=(-5)xx3/5)=color(green)(-3)#