Titration curve? Please help...

50ml of 0.100M H3PO4 is titrated with 0.100M NaOH (i) calculate the pH after the addtion of the following volumes of titrant; 0.00, 10.00, 25.00, 50.00, 65.00, 75.00, 100.00, and 110.00. Note that since Ka1 is relatively large, the complete quadratic should be solved for the first three volumes. (ii) Plot the titration curve.
answers (i) 1.62; 1.89; 2.26; 4.67; 6.84; 7.21; 9.77; 11.72; (ii) Graph

1 Answer
Jan 29, 2018

Well, first I would sketch the titration curve of a diprotic acid (#"HPO"_4^(2-)# is hard enough to form).

https://www3.nd.edu/~aseriann/CHAP2B.html/

Here we distinguish between the buffer region (wherein the half-equivalence point lies) and the equivalence point.

  • Buffer region --- Henderson-Hasselbalch equation does NOT apply UNLESS the current #K_a# is small. #K_(a1)# is not small enough, but #K_(a2)# and #K_(a3)# are.
  • Half-equivalence point --- #"pH" = "pK"_a#
  • Equivalence point --- Regular weak acid/base equilibrium!

#K_(a1,2,3) = 7.1 xx 10^(-3), 6.3 xx 10^(-8), 4.5 xx 10^(-13)#

So we first find the equivalence points.

#"H"_3"PO"_4 + 3"NaOH"(aq) -> "Na"_3"PO"_4(aq) + 3"H"_2"O"(l)#

#"Total equivalence point"#:

#"0.100 mol"/"L" xx "0.050 L" = "0.0050 mols H"_3"PO"_4#

#= "0.0150 mols OH"^(-)#

#=> "1000 mL"/"0.100 mol NaOH" xx "0.0150 mols OH"^(-)#

#=# #"150 mL"# for all three protons

#=># #"50 mL"# for each proton

Thus, the equivalence points are at #"50 mL"#, #"100 mL"#, and #"150 mL"#. Notice how we don't reach #"150 mL"#, so ignore that one.

#(ia)# #"0.00 mL"# base added

#"H"_3"PO"_4(aq) rightleftharpoons "H"_2"PO"_4^(-)(aq) + "H"^(+)(aq)#

#K_(a1) = 7.1 xx 10^(-3) = (["H"_2"PO"_4^(-)]["H"^(+)])/(["H"_3"PO"_4]) = x^2/(0.100 - x)#

Although #x# is not small enough, since #(K_(a1))/("0.100 M") < 1#, this can be done iteratively.

#x_1 ~~ sqrt(0.100K_(a1)) = "0.02665 M"#

#x_2 ~~ sqrt((0.100 - x_1)K_(a1)) = "0.02282 M"#

#x_3 ~~ sqrt((0.100 - x_2)K_(a1)) = "0.02341 M"#

#x_4 ~~ sqrt((0.100 - x_3)K_(a1)) = "0.02332 M"#

#x_5 = sqrt((0.100 - x_4)K_(a1)) = "0.02333 M"#

And thus, #x = "0.02333 M"# for #["H"^(+)]#. That gives

#color(blue)("pH"_1) = -log(0.02333) = color(blue)(1.63)#.

#(ib)# #"10.00 mL"# of base added

#"0.100 mol/L" xx "0.010 L" = "0.0010 mols OH"^(-)#

This neutralizes that much #"H"_3"PO"_4# to give

#"0.0050 mols H"_3"PO"_4 - "0.0010 mols OH"^(-)#

#= "0.0040 mols H"_3"PO"_4# leftover

#-> "0.0010 mols H"_2"PO"_4^(-)# produced

This is then a concentration of

#("0.0010 mols H"_2"PO"_4^(-))/("50.00 mL acid" + "10.00 mL base") cdot "1000 mL"/"1 L"#

#=# #"0.01667 M H"_2"PO"_4^(-)#

and #"0.06667 M H"_3"PO"_4#

These again go into the full equilibrium expression. Remember to include the initial concentrations.

#K_(a1) = 7.1 xx 10^(-3) = (["H"_2"PO"_4^(-)]["H"^(+)])/(["H"_3"PO"_4])#

#= ((0.01667 + x)(x))/(0.06667 - x)#

This must be solved in full.

#7.1 xx 10^(-3) cdot 0.06667 - 7.1 xx 10^(-3)x = 0.01667x + x^2#

#x^2 + (0.01667 + 7.1 xx 10^(-3))x - 7.1 xx 10^(-3) cdot 0.06667 = 0#

#x^2 + 0.02377x - 4.73 xx 10^(-4) = 0#

and here we get #["H"^(+)] = x = "0.01290 M"#, so

#color(blue)("pH"_2) = -log(0.01290) = color(blue)(1.89)#

#(ic)# #"25.00 mL"# of base added, the first half-equivalence point

I won't show much math here, but you can convince yourself that you are at the first half-equivalence point, so

#"pH"_3 = "pK"_(a1) = -log(7.1 xx 10^(-3)) ~~ 2.15# is expected.

However, it's a bit larger, due to Le Chatelier's principle.

#["H"_2"PO"_4^(-)] = ["H"_3"PO"_4] = "0.0025 mols"/("50.00 mL acid" + "25.00 mL base") cdot "1000 mL"/"1 L"#

#=# #"0.03333 M"#

#K_(a1) = 7.1 xx 10^(-3) = (["H"_2"PO"_4^(-)]["H"^(+)])/(["H"_3"PO"_4])#

#= ((0.03333 + x)(x))/(0.03333 - x)#

Solving this, we find

#0 = x^2 + (0.03333 + 7.1 xx 10^(-3))x - 7.1 xx 10^(-3) cdot 0.03333#

for which #x = ["H"^(+)] = "0.005188 M"# and

#color(blue)("pH"_3) = -log(0.005188) = color(blue)(2.29)#

#(id)# #"50.00 mL"# of base added, the first equivalence point

Here we are halfway between the first and second half-equivalence points, which had #"pH" = "pK"_(ai)#, so

#color(blue)("pH"_4 = 1/2("pK"_(a1) + "pK"_(a2)) = 4.67)#

#(ie)# #"65.00 mL"# of base added, or #"15.00 mL"# past first equivalence point

#"0.0015 mols NaOH"# added to neutralize #"0.0015 mols H"_2"PO"_4^(-)# to give #"0.0015 mols HPO"_4^(2-)# and #"0.0035 mols H"_2"PO"_4^(-)# in #"50.00 + 65.00 mL"# solution.

The Henderson-Hasselbalch equation here would apply, since #K_(a2)# is small. The #K_(a2)# would be:

#6.3 xx 10^(-8) = ((0.01304 + x)(x))/(0.03043 - x) ~~ (0.01304x)/0.03043#

#=> x ~~ 1.470 xx 10^(-7) "M"#

and #color(blue)("pH"_5 ~~ 6.83)#.

Or, we could have done...

#"pH"_5 = "pK"_(a2) + log((["HPO"_4^(2-)])/(["H"_2"PO"_4^(-)]))#

#= -log(6.3 xx 10^(-8)) + log(0.01304/0.03043)#

#= 6.83#

#(i f)# #"75.00 mL"# is the second half-equivalence point

And so, we get #["H"_2"PO"_4^(-)] = ["HPO"_4^(2-)]#, which means

#color(blue)("pH"_6) ~~ "pK"_(a2) = -log(6.3 xx 10^(-8))#

#= color(blue)(7.20)#

#(ig)# #"100.00 mL"# is the second equivalence point

Here we are halfway between the second and third half-equivalence points, which had #"pH" = "pK"_(ai)#, so

#color(blue)("pH"_7 = 1/2("pK"_(a2) + "pK"_(a3)) = 9.77)#

#(ih)# #"110.00 mL"# of base added, #"10.00 mL"# past the second equivalence point

Therefore, we are

#"0.100 mol/L" xx "0.010 L" = "0.0010 mols OH"^(-)#

past the second equivalence point, which means we neutralized #"0.0010 mols HPO"_4^(2-)# and made #"0.0010 mols PO"_4^(3-)#. This gives

#["HPO"_4^(2-)] = ("0.0040 mols HPO"_4^(2-))/("50.00 + 110.00 mL") cdot "1000 mL"/"1 L"#

#=# #"0.02500 M"#

#["PO"_4^(3-)] = ("0.0010 mols HPO"_4^(2-))/("50.00 + 110.00 mL") cdot "1000 mL"/"1 L"#

#=# #"0.00625 M"#

As a result, and we can again make small #x# approximations here,

#K_(a3) = 4.5 xx 10^(-13) = ((0.00625 + x)(x))/(0.02500 - x)#

#~~ 0.00625/0.02500 x#

#=> x ~~ 1.80 xx 10^(-12) "M"#

And that gives

#color(blue)("pH"_8) = -log(1.80 xx 10^(-12)) = color(blue)(11.74)#


Here we "derive" #"pH"# formulas for the first and second equivalence points.

#"pH"_("1st-half-equiv") = "pK"_(a1) + log((["base"])/(["acid"]))#

#"pH"_("2nd-half-equiv") = "pK"_(a2) + log((["base"])/(["acid"]))#

At the half-equivalence point, the concentrations of weak base and weak acid are equal, so #"pH"_("1st-half-equiv") = "pK"_(a1)#, and #"pH"_("2nd-half-equiv") = "pK"_(a2)#.

A perfect titration would give a #V_(NaOH)# volume gap on the graph such that the graph has a certain odd function symmetry throughout.

That is,

  • the #"pH"# on either side of the equivalence point is equidistant from the equivalence point #"pH"#.

  • the #"pH"# on either side of the half-equivalence point is equidistant from the half-equivalence point #"pH"#.

Therefore, if we want the second equivalence point, we are equidistant from the second half-equivalence point and third half-equivalence point, i.e.

#"pH"_("equivpt",i) = 1/2("pK"_(ai) + "pK"_(a(i+1)))#

#(ii)# And the graph should be easy to graph with these data points. It won't look as fine since you don't have all the in-between data, but... here's what I got in Excel:

Can you label this graph with the half-equivalence and equivalence points? (There are two of each on this graph.)

And a tutorial is here.