Triangle A has sides of lengths #12 #, #9 #, and #6 #. Triangle B is similar to triangle A and has a side with a length of #16 #. What are the possible lengths of the other two sides of triangle B?
1 Answer
(16,12,8), (
Explanation:
Since the triangles are similar then the ratios of corresponding sides are equal.
Name the 3 sides of triangle B , a,b and c corresponding to the sides 12,9 and 6 in triangle A.
#"---------------------------------------------------------------------------"# If side a = 16 then ratio of corresponding sides
# = 16/12 = 4/3# hence
# b = 9xx4/3 = 12" and " c = 6xx4/3 = 8# The 3 sides of B = (16 , 12 , 8 )
#"--------------------------------------------------------------------------"# If side b = 16 then ratio of corresponding sides
# = 16/9 # hence a =
# 12xx16/9 = 64/3" and " c = 6xx16/9 = 32/3 # The 3 sides of B
#=(64/3 , 16 , 32/3 ) #
#"--------------------------------------------------------------------------"# If c = 16 then ratio of corresponding sides =
#16/6 = 8/3 # hence a
#= 12xx8/3 = 32" and " b = 9xx8/3 = 24 # The 3 sides of B = (32 , 24 , 16 )
#"-----------------------------------------------------------------------------"#