Trigonometric and Hyperbolic Function?
Prove: arctan(sinh(x)) = arcsin(tanh(x))
Prove: arctan(sinh(x)) = arcsin(tanh(x))
2 Answers
We are asked to verify that:
# arctan(sinh(x)) = arcsin(tanh(x)) #
There are shorter ways to prove this result, but referring back to the hyperbolic definitions is a fool-proof method that always works:
Consider the LHS first:
Let
# alpha = arctan(sinh(x)) #
# => tan alpha = sinhx # ..... [A]
Now, consider the RHS:
Let
#beta = arcsin(tanh(x)) #
# => sin beta = tanh(x) #
# :. sin beta = sinh(x)/cosh(x) #
# " " = (1/2(e^x-e^-x))/(1/2(e^x+e^-x)) #
# " " = (e^x-e^-x)/(e^x+e^-x) #
And using the trig identity
# sin^2 beta +cos^2 beta = 1 #
# :. cos^2 beta = 1 - ((e^x-e^-x)/(e^x+e^-x))^2#
# " " = 1 - ((e^x-e^-x)^2)/((e^x+e^-x)^2)#
# " " = ((e^x+e^-x)^2 - (e^x-e^-x)^2) / (e^x+e^-x)^2#
# " " = ([(e^x+e^-x) - (e^x-e^-x)][(e^x+e^-x) + (e^x-e^-x)]) / (e^x+e^-x)^2#
# " " = ( 4e^-x e^x ) / (e^x+e^-x)^2#
# " " = ( 4 ) / (e^x+e^-x)^2#
# :. cos beta = 2 / (e^x+e^-x) #
And now we have expression for
# tan beta = sin beta / cos beta #
# " " = ( (e^x-e^-x)/(e^x+e^-x) ) / (2 / (e^x+e^-x)) #
# " " = ( (e^x-e^-x)/(e^x+e^-x) ) * ((e^x+e^-x)/2) #
# " " = (e^x-e^-x)/2 #
# " " = sinh x # ... [B]
Comparing [B] with [A], we have:
# tan beta = sinhx \ \ \ # and# \ \ \ tan alpha = sinhx #
Hence:
# tan alpha = tan beta => alpha = beta #
And so we can conclude that:
# alpha = arctan(sinh(x)) = beta = arcsin(tanh(x)) #
Hence:
# arctan(sinh(x)) = arcsin(tanh(x)) \ \ \ # QED
We are asked to verify that:
# arctan(sinh(x)) = arcsin(tanh(x)) #
Shorter Method:
Consider the LHS first:
Let
# alpha = arctan(sinh(x)) #
# => tan alpha = sinhx # ..... [A]
Now, consider the RHS:
Let
#beta = arcsin(tanh(x)) #
# => sin beta = tanh(x) #
Now:
# tan beta = (sin beta)/(cos beta) #
# " " = (tanhx)/(sqrt(1-sin^2 beta)) #
# " " = (tanhx)/(sqrt(1-tanh^2 x)) #
# " " = (tanhx)/(sqrt(sech^2 x)) #
# " " = (tanhx)/(sech x) #
# " " = (sinhx/cosh)/(1/cosh x) #
# " " = sinhx #
# " " = tan alpha #
And so we conclude that:
# alpha = beta => arctan(sinh(x)) = arcsin(tanh(x)) \ \ \ # QED