# Two roads that cross at right angles are used as the coordinate axes for a city map. A restaurant is located at the point (-2.5, 3.75). How far is the restaurant from each road?

the restaurant is $3.75 \setminus \setminus \textrm{m i \le s}$ to road X & $2.5 \setminus \setminus \textrm{m i \le s}$ to road Y

#### Explanation:

The given point $\left(x , y\right) \setminus \equiv \left(- 2.5 , 3.75\right)$ represents the location of a restaurant then

The distance of restaurant from road X

$= | \setminus \textrm{y - c \infty r \mathrm{di} n a t e o f p \oint} \left(- 2.5 , 3.75\right) |$

$= | 3.75 |$

$= 3.75 \setminus \setminus \textrm{m i \le s}$

The distance of restaurant from road Y

$= | \setminus \textrm{x - c \infty r \mathrm{di} n a t e o f p \oint} \left(- 2.5 , 3.75\right) |$

$= | - 2.5 |$

$= 2.5 \setminus \setminus \textrm{m i \le s}$

hence, the restaurant is $3.75 \setminus \setminus \textrm{m i \le s}$ to road X & $2.5 \setminus \setminus \textrm{m i \le s}$ to road Y