#u_1,u_2,u_3#,... are in Geometric progression(GP).The common ratio of the terms in the series is K.Now determine the sum of the series #u_1u_2+u_2u_3+u_3u_4+...+u_n u_(n+1)# in the form of K and #u_1#?
1 Answer
Explanation:
The general term of a geometric progression can be written:
#a_k = a r^(k-1)#
where
The sum to
#s_n = (a(1-r^n))/(1-r)#
With the information given in the question, the general formula for
#u_k = u_1 K^(k-1)#
Note that:
#u_k u_(k+1) = u_1 K^(k-1) * u_1 K^k = u_1^2 K^(2k-1)#
So:
#sum_(k=1)^n u_k u_(k+1) = sum_(k=1)^n u_1^2 K^(2k-1)#
#color(white)(sum_(k=1)^n u_k u_(k+1)) = sum_(k=1)^n (u_1^2 K)*(K^2)^(k-1)#
#color(white)(sum_(k=1)^n u_k u_(k+1)) = sum_(k=1)^n a r^(k-1)" "# where#a=u_1^2K# and#r = K^2#
#color(white)(sum_(k=1)^n u_k u_(k+1)) = (a(1-r^n))/(1-r)#
#color(white)(sum_(k=1)^n u_k u_(k+1)) = (u_1^2K(1-K^(2n)))/(1-K^2)#