If f(x)=ax+b and f^-1(x)=bx+a, what are the values of a and b?

1 Answer
Nov 24, 2017

#a=-1, b=-1#.

Explanation:

If a function #f(x)# has an inverse function #f^-1(x)#,
#color(red)(f(f^-1(x))=x)# is always true.

Then,
#f(f^-1(x))=x#
#⇔ a(bx+a) +b =x#
#⇔ abx+a^2+b=x#

It must be an identity for #x#. Hence,
#ab=1# (1) and
#a^2+b=0# (2)
are satisfied.

From the equation (2), #b=-a^2#. Substitute this into (1),
#-a^3=1#
#a^3=-1#
#a=-1# (assuming that #a# is a real number.)
#b=-(-1)^2=-1#.