Using quadratic eq solve x 2-12x+40=0?

1 Answer
Jun 8, 2018

x=6+2i and 6-2i

Explanation:

As per the question, we have

x^2-12x+40=0

:. By applying the quadratic formula, we get

x = (-b±sqrt(b^2-4ac))/(2a)

:.x = (-(-12)±sqrt((-12)^2-4(1)(40)))/(2(1))

:.x = (12±sqrt(144-160))/2

:.x =(12±sqrt(-16))/2

Now, as our Discriminant ( sqrt D ) < 0, we're gonna get imaginary roots (in terms of i / iota).

:.x=(12±sqrt(16)xxsqrt(-1))/2

:.x=(12±4 xx i)/2

:.x=(6±2i)

:.x=6+2i , 6-2i

Note : For those who don't know, i ( iota ) = sqrt(-1).