Using synthetic division, how to divide the following? (A) #(x^2+8x+11)÷ (x+3)# (B) #(x^3-4x^2-2x+5) ÷ (x-1)# (C) #(3x^4-4x+2x^3-1)÷(x+3)# (D) #(x^5-36) ÷ (x-2)#

2 Answers
Jul 24, 2018

#(B)(x^3-4x^2-2x+5)=(x-1)(x^2-3x-5)+0#

Explanation:

There are four questions in your one question.
Let us take #(B)(x^3-4x^2-2x+5)div(x-1)#
Here,

#p(x)=x^3-4x^2-2x+5and # divisor #x=1#

We take coefficients of #p(x)to1,-4,-2,5#
and set the problem as shown below.

#color(red)("Put zero {0} below the first number {1} and add : " 1+0=1#

. #1 |# #color(red)1color(white)(.....)-4color(white)(.....)-2color(white)(......)5#
#ulcolor(white)(.2)|# #ul(color(red)0color(white)(..................................)#
#color(white)(....)color(red)1#

#color(blue)("Now multiply this {1}with divisor"# #color(blue)((1)to1xx(1)=1# #color(blue)("and put below second number{-4} and add"#

#color(blue)(to-4+1=-3#

. # 1 |# #1color(white)(.....)color(blue)(-4)color(white)(.....)-2color(white)(.......)5#
#ulcolor(white)()|# #ul(0color(white)(..........)color(blue)(1)color(white)(......................)#
#color(white)(....)1color(white)(.......)color(blue)(-3color(white)(.....20color(white)(.........)ul|0|#
Again repeat the process :

#i.e. color(brown)(-3xx(1)=-3 and -2+(-3)=-5#

.# 1 |# #1color(white)(.........)-4color(white)(.......)color(brown)-2color(white)(.......)5#
#ulcolor(white)()|# #ul(0color(white)(...........)1color(white)(..........)color(brown)(-3)color(white)(.........10#
#color(white)(....)1color(white)(.........) -3color(white)(.........)color(brown)(-5)color(white)(.........ul|0|#

Again , #color(violet)(-5xx(1)=-5 and (5)+(-5)=0#

.#1 |# #1color(white)(.......)-4color(white)(.......)-2color(white)(........)color(violet)(5#
#ulcolor(white)()|# #ul(0color(white)(...........)1color(white)(.......)-3color(white)(......)color(violet)(-5#
#color(white)(....)1color(white)(.......)-3color(white)(.......)-5color(white)(.........)color(violet)(ul|0|#
We can see that , quotient polynomial :

#q(x)=x^2-3x-5 and"the Remainder"=0#

Hence ,

#(x^3-4x^2-2x+5)=(x-1)(x^2-3x-5)+0#

Note: For #(A),(C),and (D)" please see the second answer."#

Jul 24, 2018

#(A)(x^2+8x+11)=(x+3)(x+5)+(-4)#
#(C)(3x^4+2x^3-4x-1)#=#(x+3)(3x^3-7x^2+21x-67)+200#
#(D)(x^5-36)=(x-2)(x^4+2x^3+4x^2+8x+16)+(-4)#

Explanation:

#(A)(x^2+8x+11)div(x+3)#

We have , #p(x)=x^2+8x+11 and "divisor :"x=-3#

We take ,coefficients of #p(x) to1, 8, 11#

#-3 |# #1color(white)(.......)8color(white)(.......)11#
#ulcolor(white)(....)|# #ul(0color(white)( ...)-3color(white)(..)-15#
#color(white)(......)1color(white)(.......)5color(white)(.......)color(violet)(ul|-4|#
We can see that , quotient polynomial :

#q(x)=x+5 and"the Remainder"=-4#

Hence ,

#(x^2+8x+11)=(x+3)(x+5)+(-4)#
........................................................................................................

#(C)(3x^4+2x^3-4x-1)div(x+3)#

#p(x)=3x^4+2x^3color(red)(+0x^2)-4x-1to3,2,0,-4,-1#

#-3 |# #3color(white)(.......)2color(white)(.......)0color(white)(.......)-4color(white)(.......)-1#
#ulcolor(white)(....)|# #ul(0color(white)( ...)-9color(white)(.......)21color(white)(......)-63color(white)(.....)201#
#color(white)(......)3color(white)(....)-7color(white)(......)21color(white)(.......)-67color(white)(....)color(violet)(ul|200|#
Hence,
#(3x^4+2x^3-4x-1)##=(x+3)(3x^3-7x^2+21x-67)+200#
................................................................................................................

#(D)(x^5-36)div(x-2)#

#p(x)=x^5+0x^4+0x^3+0x^2+0x-36to1,0,0,0,0,-36#

.#2 |# #1color(white)(.......)0color(white)(.......)0color(white)(.......)0color(white)(.......)0color(white)(...)-36#
#ulcolor(white)()|# #ul(0color(white)( .......)2color(white)(.......)4color(white)(.......)8color(white)(.....)16color(white)(......)32#
#color(white)(......)1color(white)(......)2color(white)(.......)4color(white)(.......)8color(white)(.......)16 color(white)(....)color(violet)(ul|-4|#
Hence,

#(x^5-36)=(x-2)(x^4+2x^3+4x^2+8x+16)+(-4)#