Using the integral test, how do you show whether #sum 1/(n(lnn)^2) # diverges or converges from n=1 to infinity?

1 Answer
Sep 1, 2015

This may be a "trick question". The term #1/(n(lnn)^2)# is not defined for #n = 1#.

Explanation:

I don't know whether this is a trick question the student was asked of if there is an error in posting it here.

If we eliminate the first term and do the integral test for #sum_2^oo 1/(n(lnn)^2) #, then
I think it is fairly clear that the function #f(x) = 1/(x(lnx)^2)# is eventually non-negative and monotone decreasing, so the challenge is to integrate the function on #[1,oo)#

#int_2^oo 1/(x(lnx)^2) dx = lim_(brarroo)int_2^b 1/(x(lnx)^2) dx#

# = lim_(brarroo)int_2^b 1/(lnx)^2 1/x dx#

# = lim_(brarroo)int_2^b (lnx)^-2 1/x dx#

# = lim_(brarroo) [-(lnx)^-1]_2^b#

# = lim_(brarroo) [-1/lnb - (-1/ln2)]#

# = 0+1/ln2#

So the integral and the series both converge.

Reminder

If we really wanted to we could integrate:

#int_1^oo 1/(x(lnx)^2) dx# by evaluating both:

#int_1^c f(x) dx# and #int_c^oo f(x) dx#

#lim_(ararr1^+) int_a^c 1/(x(lnx)^2) dx# #" "# and #" "# #lim_(brarroo) int_c^b 1/(x(lnx)^2) dx#

for #c# in #(1,oo)#

The integral #int_1^c f(x) dx# diverges, so #int_1^oo 1/(x(lnx)^2) dx# diverges.