Using the integral test, how do you show whether #sum 1/(nln(3n))# diverges or converges from n=1 to infinity?

1 Answer
Mar 31, 2018

Diverges.

Explanation:

Let #f(x)=1/(xln3x)#. Now, the integral test tells us that if #f(x)# is positive, continuous, and decreasing on #[k, oo)#, the convergence or divergence of #int_k^oof(x)dx# will tell us about the convergence or divergence of #sum_(n=k)^oof(n)#.

So, we have #sum_(n=1)^oo1/(nln3n)# and we will be evaluating #int_1^oo1/(xln3x)dx#.

First, let's find the general antiderivative for #intdx/(xln3x).#

Let #u=ln(3x), du=(3/(3x))dx=dx/x#

So, we then have #int(du)/u=ln|u|=ln|ln(3x)|#

Now,

#int_1^oodx/(xln3x)=lim_(t->oo)int_1^tdx/(xln3x)=lim_(t->oo)(ln|ln3x|)|_1^t#

Evaluate the limit:

#lim_(t->oo)(ln(ln3t)-ln(ln3))=oo-ln(ln3)#

We can drop the absolute value bars. Not working with any negatives.

The integral diverges; therefore, so does the series.