#w^4=-16i# how to write in de moivre theorem form?

1 Answer

See answer below

Explanation:

Given that

#w^4=-16i#

#w^4=16(-i)#

#w^4=16(\cos(-\pi/2)+i\sin(-\pi/2))#

#w=(16(\cos(-\pi/2)+i\sin(-\pi/2)))^{1/4}#

#=16^{1/4}(\cos(-\pi/2)+i\sin(-\pi/2))^{1/4}#

#=2(\cos(2k\pi-\pi/2)+i\sin(2k\pi-\pi/2))^{1/4}#

#=2(\cos(\frac{(4k-1)\pi}{2})+i\sin(\frac{(4k-1)\pi}{2}))^{1/4}#

#=2(\cos(\frac{(4k-1)\pi}{8})+i\sin(\frac{(4k-1)\pi}{8}))#

Where, #k=0, 1, 2, 3 #

By setting values of #k#, we get four values/roots of given #4#th degree equation.