We have #A=((1,-1),(1,1))#.How to find #A^1995#?

1 Answer
May 29, 2017

#A^1995 = -2^997((1,1),(-1,1))#

Explanation:

We have #A=((1,-1),(1,1))#.How to find #A^1995#?

The matrix #A# characteristic polynomial gives

#p(lambda)=lambda^2-2lambda+2# and #A# obeys it.

#A^2-2A+2I=0# or

#A^3-2A^2+2A = 0#

This obeys a recurrence relationship as in the difference equation

#a_(n+2)-2a_(n+1)+a_n=0# with solution

#a_n = A^n = C_1 2^(n/2)cos((n pi)/4)+C_2 2^(n/2)sin((n pi)/4)#

From #A# and #A^2# we can compute the #C_1, C_2# matrix components giving

#C_1 = ((1,0),(0,1))#
#C_2 = ((0,-1),(1,0))#

Then

#A^1995 = sqrt(2) xx 2^997(-1/sqrt(2)((1,0),(0,1))+ 1/sqrt2((0,-1),(1,0))) # or

#A^1995 = 2^997((-1,-1),(1,-1))#