We have #f=X^3-3X^2+1#;How to find #x_1^(-4)+x_2^(-4)+x_3^(-4)#?; #x_1,x_2,x_3# are roots of #f(x)=0#.
2 Answers
Explanation:
We have:
#f(x) = x^3-3x^2+1#
#color(white)(f(x)) = (x-x_1)(x-x_2)(x-x_3)#
#color(white)(f(x)) = x^3-(x_1+x_2+x_3)x^2+(x_1x_2+x_2x_3+x_3x_1)x-x_1x_2x_3#
So:
#{(x_1+x_2+x_3 = 3), (x_1x_2+x_2x_3+x_3x_1 = 0), (x_1x_2x_3 = -1):}#
Note that:
#x_1^(-4)+x_2^(-4)+x_3^(-4)#
can be written as a rational function of symmetric polynomials:
#x_1^(-4)+x_2^(-4)+x_3^(-4)=(x_2^4x_3^4+x_3^4x_1^4+x_1^4x_2^4)/(x_1^4x_2^4x_3^4)#
Then:
#x_2^4x_3^4+x_3^4x_1^4+x_1^4x_2^4" "# and#" "x_1^4x_2^4x_3^4#
are expressible in terms of the elementary symmetric polynomials (whose values we already know):
#{(x_1+x_2+x_3 = 3), (x_1x_2+x_2x_3+x_3x_1 = 0), (x_1x_2x_3 = -1):}#
We find:
#x_1^2+x_2^2+x_3^2 = (x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_3x_1)#
#color(white)(x_1^2+x_2^2+x_3^2) = color(blue)(3)^2-2(color(blue)(0))#
#color(white)(x_1^2+x_2^2+x_3^2) = color(green)(9)#
#x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2 = (x_1x_2+x_2x_3+x_3x_1)^2-2(x_1+x_2+x_3)x_1x_2x_3#
#color(white)(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2) = (color(blue)(0))^2-2(color(blue)(3))(color(blue)(-1))#
#color(white)(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2) = color(green)(6)#
#x_1^2x_2^2x_3^2 = (x_1x_2x_3)^2 = (color(blue)(-1))^2 = color(green)(1)#
Then:
#x_2^4x_3^4+x_3^4x_1^4+x_1^4x_2^4#
#=(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2)^2 - 2(x_1^2+x_2^2+x_3^2)(x_1^2x_2^2x_3^2)#
#=(color(green)(6))^2-2(color(green)(9))(color(green)(1))#
#=36-18#
#=color(red)(18)#
#x_1^4x_2^4x_3^4 = (x_1^2x_2^2x_3^2)^2 = (color(green)(1))^2 = color(red)(1)#
So:
#x_1^(-4)+x_2^(-4)+x_3^(-4)=color(red)(18)/color(red)(1) = 18#
See below.
Explanation:
From
Calling
so the polynomial
has as roots, the inverses of
Now taking
or
so
or
or
but
so finally