We have #I_n=int_1^e(lnx)^n#.How to demonstrate that #I_n# is bordered and how to find #lim_(n->oo)I_n#?

1 Answer
May 28, 2017

See below.

Explanation:

#d/(dx)(x( log_e x)^n)=n( log_e x)^(n-1)+( log_e x)^n#

but

#[x( log_e x)^n ]_1^e = e#

so

#n I_(n-1)+I_n = e# with #I_1 = int_1^e log_e xdx = 1#

The difference equation is a linear non-homogeneous one so it's solution can be written as

#I_n = I_n^h + I_n^p#

with

#n I_(n-1)^h+I_n^h = 0# and
#n I_(n-1)^p+I_n^p = e# ----- (*)

The homogeneous solution is

#I_n^h = (-1)^n n! C#

Making now #C = c_n# and substituting #I_n^p = c_n(-1)^n n! # into (*)
we obtain the recurrence law to #c_n# This is quite easy and is left to the reader.

The final solution is

#I_n =I_n^h+I_n^p =(-1)^n n! (e(sum_(k=0)^n (-1)^k/(k!))-1)#

NOTE:

#lim_(n->oo)sum_(k=0)^n (-1)^k/(k!) = e^-1#

so

#lim_(n->oo)I_n = 0#

NOTE:

Using Stirling's asymptotic formula

#n! approx sqrt(2 pi n)(n/e)^n# and calling #e_n = sum_(k=0)^n 1/(k!)# we have

#I_n approx (-1)^n sqrt(2 pi n)(n/e)^n((e-e_n)/e_n)=#

#= (-1)^n sqrt(2 pi n)(n/e)^n (sum_(k=n)^oo 1/(k!))/e_n =#

#= (-1)^n sqrt(2 pi n)/e_n (sum_(k=n)^oon^n/(k!))e^(-n)#

so

#lim_(n->oo)I_n = 0#

Attached plot showing the first #16# terms for #I_n#

enter image source here

As we can observe #0 lt I_n le 1#