What are all the possible rational zeros for y=4x^3+12x^2+x+3 and how do you find all zeros?
1 Answer
Use the rational root theorem to find "possible" rational zeros:
+-1/4, +-1/2, +-3/4, +-1, +-3/2, +-3
Factor by grouping to find the actual zeros:
Explanation:
f(x) = 4x^3+12x^2+x+3
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
+-1/4, +-1/2, +-3/4, +-1, +-3/2, +-3
In fact, since all of the coefficients of
-1/4, -1/2, -3/4, -1, -3/2, -3
We could try each of these in turn, but there's something else we can notice about this particular cubic: The ratio between the first and second terms is the same as that between the third and fourth terms. As a result, this cubic will factor by grouping:
4x^3+12x^2+x+3 = (4x^3+12x^2)+(x+3)
color(white)(4x^3+12x^2+x+3) = 4x^2(x+3)+1(x+3)
color(white)(4x^3+12x^2+x+3) = (4x^2+1)(x+3)
Hence
The other two zeros are non-Real Complex since
a^2-b^2 = (a-b)(a+b)
with
4x^2+1 = (2x)^2-i^2 = (2x-i)(2x+i)
Hence the two remaining zeros are