What are the asymptotes and removable discontinuities, if any, of #f(x)= sqrt(x)/(e^x-1)#?
1 Answer
Explanation:
Given:
#f(x) = sqrt(x)/(e^x-1)#
-
The domain of the numerator
#sqrt(x)# is#[0, oo)# -
The domain of the denominator
#e^x - 1# is#(-oo, oo)# -
The denominator is zero when
#e^x = 1# , which for real values of#x# only occurs when#x=0#
Hence the domain of
Using the series expansion of
#f(x) = sqrt(x)/(e^x - 1)#
#color(white)(f(x)) = sqrt(x)/((1+x+x^2/2+x^3/6+...) - 1)#
#color(white)(f(x)) = sqrt(x)/(x+x^2/2+x^3/6+...)#
#color(white)(f(x)) = 1/(sqrt(x)(1+x/2+x^2/6+...)#
So:
#lim_(x->0^+) f(x) = lim_(x->0^+) 1/(sqrt(x)(1+x/2+x^2/6+...))#
#color(white)(lim_(x->0^+) f(x)) = lim_(x->0^+) 1/(sqrt(x)(1+0+0+...))#
#color(white)(lim_(x->0^+) f(x)) = lim_(x->0^+) 1/(sqrt(x))#
#color(white)(lim_(x->0^+) f(x)) = +oo#
and:
#lim_(x->oo) f(x) = lim_(x->oo) 1/(sqrt(x)(1+x/2+x^2/6+...)) = 0#
So
graph{sqrt(x)/(e^x-1) [-6.1, 13.9, -2.92, 7.08]}