Given: #-x/((x^2-8)(5x+2))#
Factor the difference of squares in the denominator #a^2 - b^2 = (a-b)(a+b):#
#(x^2 - (sqrt(8))^2) = (x - sqrt(8))(x + sqrt(8))#
#sqrt(8) = sqrt(4*2) = 2sqrt(2)#
Therefore:
#-x/((x^2-8)(5x+2)) = -x/((x-2sqrt(2))(x+2sqrt(2))(5x+2))#
Find vertical asymptotes #D(x) = 0#:
vertical asymptotes: #x = +- 2sqrt(2); x = -2/5#
Find horizontal asymptotes using Precalculus for a rational function: #(N(x))/(D(x)) = (a_nx^n + ...)/(b_mx^m + ...)#
When #n < m# horizontal asymptote is #y = 0#
Using Calculus to find horizontal asymptotes:
#lim x->oo -x/((x^2-8)(5x+2)) =#
#lim x->oo -x/(5x^3+2x^2-40x+16)#
Divide all by the largest #x# in the denominator:
#lim x->oo (-x/x^3)/((5x^3)/x^3 + (2x^2)/x^3 - (40x)/x^3 + 16/x^3)#
#lim x->oo (-1/x^2)/(5 + 2/x - 40/x^2 + 16/x^3) = 0/5 = 0#