What are the concentrations of #H_2CO_3# and its conjugate bases in a raindrop with #pH = 5.90#?

Calculate the concentrations of carbonic acid, bicarbonate ion (#HCO_3^-#) and carbonate ion (#CO_3^(2−)#) that are in a raindrop that has a pH of 5.90, assuming that the sum of all three species in the raindrop is #1.0*10^(−5)M#.

Where,

#K_(a_1) = 4.3*10^-7#, and
#K_(a_2) = 5.6*10^-11#

1 Answer
Dec 8, 2017

We must assume,

#[H_2CO_3] + [HCO_3^(-)] + [CO_3^(2-)] = 1.0*10^-5#, and
#pH = 10^(-5.90) approx 1.26*10^-6M#

Moreover,

#H_2CO_3(aq) rightleftharpoons H^(+)(aq) + HCO_3^(-)(aq)#
#HCO_3^(-)(aq) rightleftharpoons H^(+)(aq) + CO_3^(2-)(aq)#

and,

#K_(a_1) = ([H^(+)][HCO_3^(-)])/([H_2CO_3])#
#K_(a_2) = ([H^(+)][CO_3^(2-)])/([HCO_3^(-)])#

So, we will relate these equilibrium expressions,

#[H_2CO_3] = ([H^(+)][HCO_3^(-)])/(K_(a_1)#

#[CO_3^(2-)] = (K_(a_2)[HCO_3^(-)])/([H^(+)])#

and our assumption,

#([H^(+)][HCO_3^(-)])/(K_(a_1)) + [HCO_3^(-)] + (K_(a_2)[HCO_3^(-)])/([H^(+)]) = 1.0*10^-5#

Now, to simplify a bit,

#[H^+]^2[HCO_3^(-)] + K_(a_1)[H^+][HCO_3^-] + K_(a_1)K_(a_2)[HCO_3^(-)] = 1.0*10^-5 * K_(a_1) [H^+]=>#

#[HCO_3^(-)]([H^+]^2 + K_(a_1)[H^+] + K_(a_1)K_(a_2))= 1.0*10^-5 * K_(a_1) [H^+]#

#therefore [HCO_3^(-)] approx 2.5*10^-6M#

From here, it's a lot easier! We'll use the former equilibrium expressions,

#[H_2CO_3] = ((1.3*10^-6)(2.5*10^-6))/(4.3*10^-7) approx 7.5*10^-6#, and

#[CO_3^(2-)] = ((5.6*10^-11)(2.5*10^-6))/(1.3*10^-6) approx 1.1*10^-10#