What are the critical values, if any, of #f(x)=2secx + tan x in[-pi,pi]#?
1 Answer
Explanation:
Quickly showing the derivations for the derivatives of
#d/dxsecx=d/dx(1/cosx)#
#color(white)(d/dxsecx)=d/dx(cosx)^-1#
#color(white)(d/dxsecx)=-(cosx)^-2d/dx(cosx)#
#color(white)(d/dxsecx)=-1/cos^2x(-sinx)#
#color(white)(d/dxsecx)=1/cosx(sinx/cosx)#
#color(white)(d/dxsecx)=secxtanx#
#d/dxtanx=d/dx(sinx/cosx)#
#color(white)(d/dxtanx)=((d/dxsinx)cosx-sinx(d/dxcosx))/cos^2x#
#color(white)(d/dxtanx)=(cosx(cosx)-sinx(-sinx))/cos^2x#
#color(white)(d/dxtanx)=(cos^2x+sin^2x)/cos^2x#
#color(white)(d/dxtanx)=1/cos^2x#
#color(white)(d/dxtanx)=sec^2x#
So, if
#f'(x)=2secxtanx+sec^2x#
#color(white)(f'(x))=(2sinx)/cos^2x+1/cos^2x#
#color(white)(f'(x))=(2sinx+1)/cos^2x#
A critical value will occur when
We note that