What are the real zeros of this function #f(x)=3x^3+6x^2-15x-30#?
1 Answer
Mar 15, 2018
Explanation:
Given:
#f(x) = 3x^3+6x^2-15x-30#
Note that all of the terms are divisible by
So we can separate out the scalar factor
#3x^3+6x^2-15x-30 = 3(x^3+2x^2-5x-10)#
#color(white)(3x^3+6x^2-15x-30) = 3((x^3+2x^2)-(5x+10))#
#color(white)(3x^3+6x^2-15x-30) = 3(x^2(x+2)-5(x+2))#
#color(white)(3x^3+6x^2-15x-30) = 3(x^2-5)(x+2)#
#color(white)(3x^3+6x^2-15x-30) = 3(x^2-(sqrt(5))^2)(x+2)#
#color(white)(3x^3+6x^2-15x-30) = 3(x-sqrt(5))(x+sqrt(5))(x+2)#
So