What are the roots of the polynomial equation #x^3-5x+5=2x^2-5#?

1 Answer
Jun 9, 2016

#x in {sqrt(5/2), -sqrt(5/2),2}#

Explanation:

#x^3-5x+5=2x^2-5#

#rArrcolor(white)("XX")x^3-2x^2-5x+10=0#

#rArrcolor(white)("XX")2x^2(x-2)-5(x-2)=0#

#rArrcolor(white)("XX")(2x^2-5)(x-2)=0#

#rArrcolor(white)("XX")2x^2-5=0color(white)("XX")rarrcolor(white)("XX")x=+-sqrt(5/2)#
or
#color(white)(rArr"XX")x-2=0color(white)("XXX")rarrcolor(white)("XX")x=2#