What are the #x#-intercepts of the graph of #f(x)=8 sin^2x-4# on the interval #[0, 2pi]#?

1 Answer
Jul 22, 2017

#x = pi/4, (3pi)/4, (5pi)/4, (7pi)/4# for #x in [0, 2pi]#

Explanation:

#f(x) = 8sin^2x-4#

The #x-#intercepts of the graph of #f(x)# occur where #f(x)=0#

Hence, where: #8sin^2x-4 = 0#

#8sin^2x = 4#

#sin^2x = 4/8 = 1/2#

#:. sinx = +-sqrt(1/2)#

#x = arcsin (+-1/sqrt2)#

#x = pi/4, (3pi)/4, (5pi)/4, (7pi)/4# for #x in [0, 2pi]#

Which generalises to #(2n-1)pi/4 forall n in ZZ#

This can be seen on the graph of #f(x)# below.

graph{8(sinx)^2-4 [-8.78, 9, -4.17, 4.71]}