What are the zeroes of #p(x) = 2x^4 + x^3 - 2x -1#?
1 Answer
Jan 1, 2016
Real zeros
Complex zeros
Explanation:
Factor
#2x^4+x^3-2x-1#
#=(2x^4+x^3)-(2x+1)#
#=x^3(2x+1)-1(2x+1)#
#=(x^3-1)(2x+1)#
#=(x^3-1^3)(2x+1)#
#=(x-1)(x^2+x+1)(2x+1)#
This has Real zeros
It has Complex zeros that you can find using the quadratic formula on
#x = (-b+-sqrt(b^2-4ac))/(2a) = (-1+-sqrt(-3))/2 = -1/2 +-sqrt(3)/2 i#
Note that