What are the zeroes of the quadratic function #8x ^ { 2} - 16x - 15#?

1 Answer
Jul 16, 2017

#x = 1+-sqrt(46)/4#

Explanation:

We can find the zeros by completing the square:

#0 = 2(8x^2-16x-15)#

#color(white)(0) = 16x^2-32x-30#

#color(white)(0) = (4x)^2-2(4x)(4)+4^2-46#

#color(white)(0) = (4x-4)^2-(sqrt(46))^2#

#color(white)(0) = ((4x-4)-sqrt(46))((4x-4)+sqrt(46))#

#color(white)(0) = (4x-4-sqrt(46))(4x-4+sqrt(46))#

#color(white)(0) = 16(x-1-sqrt(46)/4)(x-1+sqrt(46)/4)#

Hence:

#x = 1+-sqrt(46)/4#