What are the zeroes of the quadratic function #8x ^ { 2} - 16x - 15#?
1 Answer
Jul 16, 2017
Explanation:
We can find the zeros by completing the square:
#0 = 2(8x^2-16x-15)#
#color(white)(0) = 16x^2-32x-30#
#color(white)(0) = (4x)^2-2(4x)(4)+4^2-46#
#color(white)(0) = (4x-4)^2-(sqrt(46))^2#
#color(white)(0) = ((4x-4)-sqrt(46))((4x-4)+sqrt(46))#
#color(white)(0) = (4x-4-sqrt(46))(4x-4+sqrt(46))#
#color(white)(0) = 16(x-1-sqrt(46)/4)(x-1+sqrt(46)/4)#
Hence:
#x = 1+-sqrt(46)/4#