What are the zeros of the function #f(x)=x^2+5x+5# written in simplest radical form?
1 Answer
Explanation:
Given:
#f(x) = x^2+5x+5#
Method 1 - Completing the square
Solve:
#0 = 4f(x)#
#color(white)(0) = 4(x^2+5x+5)#
#color(white)(0) = 4x^2+20x+20#
#color(white)(0) = (2x)^2+2(2x)(5)+25-5#
#color(white)(0) = (2x+5)^2-(sqrt(5))^2#
#color(white)(0) = ((2x+5)-sqrt(5))((2x+5)+sqrt(5))#
#color(white)(0) = (2x+5-sqrt(5))(2x+5+sqrt(5))#
So:
#2x = -5+-sqrt(5)#
Dividing both sides by
#x = -5/2+-sqrt(5)/2#
Method 2 - Quadratic formula
Note that
#f(x) = ax^2+bx+c#
with
This has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-(color(blue)(5))+-sqrt((color(blue)(5))^2-4(color(blue)(1))(color(blue)(5))))/(2(color(blue)(1)))#
#color(white)(x) = (-5+-sqrt(25-20))/2#
#color(white)(x) = (-5+-sqrt(5))/2#
#color(white)(x) = -5/2+-sqrt(5)/2#