What are values of #k# so that the trinomial #x^2+kx-35# can be factored using integers?
1 Answer
Mar 27, 2018
Explanation:
Given:
#x^2+kx-35#
Any integer factorisation must take the form:
#(x+m)(x+n) = x^2+(m+n)x+mn#
So:
#mn = -35#
#m + n = k#
The possible values of
#+-1, +-5, +-7, +-35#
So possible values of
#1-35 = -34#
#5-7 = -2#
#7-5 = 2#
#35-1 = 34#