What does #(1+2/x-15/x^2)/(1+4/x-5/x^2)# simplify to?

2 Answers
Aug 10, 2016

#=(x-3)/(x-1)#

Explanation:

#(1+2/x-15/x^2)/(1+4/x-5/x^2#
#=((x^2+2x-15)/x^2)/((x^2+4x-5)/x^2)#
#=((x^2+2x-15)/cancelx^2)/((x^2+4x-5)/cancelx^2#
#=(x^2+2x-15)/(x^2+4x-5)#
#=(x^2+5x-3x-15)/(x^2+5x-x-5)#
#=(x(x+5)-3(x+5))/(x(x+5)-1(x+5))#
#=((x+5)(x-3))/((x+5)(x-1))#
#=(x-3)/(x-1)#

Aug 10, 2016

=#(x-3)/(x-1)#

Explanation:

#(1+2/x-15/x^2)/(1+4/x-5/x^2)#

It is easier to tackle if it is written like this instead:

#color(red)((1/1+2/x-15/x^2)) div color(blue)((1/1+4/x-5/x^2))#

Adding and subtracting fractions, we need the LCD

=#color(red)(((x^2 +2x-15)/x^2)) div color(blue)(((x^2+4x-5)/x^2))#

Factorise the quadratic trinomials

=#color(red)(((x+5)(x-3))/x^2)div color(blue)(((x+5)(x-1))/x^2)#

Divide becomes #xx " by the reciprocal and simplify"#

= #(cancel(x+5)(x-3))/cancelx^2xx cancelx^2/(cancel(x+5)(x-1))#

=#(x-3)/(x-1)#