What is #(14x^3y^6)/(7x^5y^2)#?

1 Answer
Feb 28, 2016

#(2y^4)/(x^2)#

Explanation:

#1#. Factor out #7# from the numerator and denominator.

#(14x^3y^6)/(7x^5y^2)#

#=(7(2x^3y^6))/(7(x^5y^2))#

#2#. Simplify.

#=(color(red)cancelcolor(black)7(2x^3y^6))/(color(red)cancelcolor(black)7(x^5y^2))#

#=(2x^3y^6)/(x^5y^2)#

#3#. Factor out #x^3# from the numerator and denominator. Recall the exponent quotient rule: #a^m-:a^n=a^(m-n)#.

#=(x^3(2y^6))/(x^3(x^2y^2))#

#4#. Simplify.

#=(color(red)cancelcolor(black)(x^3)(2y^6))/(color(red)cancelcolor(black)(x^3)(x^2y^2))#

#=(2y^6)/(x^2y^2)#

#5#. Factor out #y^2# from the numerator and denominator.

#=(y^2(2y^4))/(y^2(x^2))#

#6#. Simplify.

#=(color(red)cancelcolor(black)(y^2)(2y^4))/(color(red)cancelcolor(black)(y^2)(x^2))#

#7#. Rewrite the expression.

#=(2y^4)/(x^2)#

#:.#, the simplified expression is #(2y^4)/(x^2)#.